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Abstract. The earlier-described microscopical theory of homogeneous nucleation in alloys
is used to calculate the nucleation rate and the critical embryo parameters for several alloy
models. The results of the calculations provide both qualitative and quantitative information
about the characteristics of nucleation in alloys and their variations with the supersaturations,
the temperatureT , and the inter-atomic interaction rangerint . Several approximations of various
levels of sophistication are used to treat the composition fluctuation effects which are shown to
be usually important for the thermodynamics of nucleation. With increasing supersaturation or
temperature the nucleation barrier lowers and the embryo interface with the exterior phase gets
more diffuse, in agreement with the results of previous treatments, but making allowance for the
fluctuative effects provides significant quantitative refinements for the results. The limitations of
the conventional theories of nucleation due to neglecting the interaction of different embryos are
discussed, and their region of validity, depending on the parameterss, T , andrint , is estimated.

1. Introduction

In the preceding paper [1] (to be referred to as I) we discussed the theory of the homogeneous
nucleation in metastable states of alloys. When the number of embryos of the new phase in
the metastable state is small and their interaction with each other is negligible, the nucleation
rate J , i.e. the number of critical and supercritical embryos being formed in unit volume
per unit time, is usually described by the Zeldovich–Volmer equation derived by Zeldovich
in his phenomenological theory [2]:

J = J0 exp(−β 1�c). (1)

Hereβ = 1/T is the reciprocal temperature,1�c is the activation barrier for the formation
of the critical embryo, and the prefactorJ0 is determined by the kinetic characteristics.
In most theoretical treatments of nucleation, the quantities1�c and J0 are considered as
phenomenological parameters. Microscopical estimates of the nucleation barrier1�c based
on a simplified approach have been made by Cahn and Hilliard [3]. As was discussed in I,
these estimates yielded important qualitative information—in particular, about the variation
of the properties of critical embryos and the1�c values with the supersaturation of the
initial metastable state. However, no discussion of the prefactorJ0 in (1), or of possible
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errors of the approach used and its validity region, and no estimates for solid alloys have
been given in reference [3].

At the same time, experimental studies of the homogeneous nucleation encounter
difficulties, in particular, as it is usually difficult to separate it from the heterogeneous
nucleation at various impurities, interfaces, lattice defects in solids, etc. Therefore,
information on the critical embryos and the parameters1�c and J0 for real systems—
in particular, for alloys—is rather scarce as yet.

In I we developed the microscopical theory of the homogeneous nucleation in alloys
in terms of the configurational interactionsvij (used in conventional theories of alloys; see
e.g. [5]) and some microscopical kinetic characteristics. In the present work we employ these
results to study the properties of the critical embryo, and to calculate the parameters1�c
andJ0 in equation (1) for several simple models of alloys. The results of the calculations
provide both qualitative and quantitative information on the scale of the characteristics of
nucleation in alloys, as well as on their dependence on external and internal parameters of
the system, such as the supersaturation, the temperature, and the inter-atomic interaction
range. These results also enable one to estimate the validity region for the conventional
approaches to the nucleation theory [1–4], in which the interactions of different embryos
are neglected.

In section 2 we describe the main equations and the models used. In section 3 we
discuss the methods of our calculations. The results of the calculations are presented in
section 4 and are discussed in section 5. The main conclusions are summarized in section 6.

2. The main relations and models used

This work is based on the results and arguments discussed in the previous paper, I. Thus in
this section we present only a few basic equations from I which seem to be necessary for
understanding the results given below. For all of the details and explanations, we refer the
reader to I.

Figure 1. Equilibrium (c, T ′) phase diagrams, whereT ′ = T/Tc and Tc is the critical
temperature. Solid and long-dashed lines show the pair-cluster-approximation (PCA) results
for the models fcc-3 and fcc-1, respectively, which are described in section 2; dashed lines
show the mean-field-approximation (MFA) results for all of the models. The upper curves are
binodals, and the lower curves are spinodals.
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We consider the uniform disordered binary alloy AcB1−c quenched into the metastability
regioncb(T ) < c < cs(T ) wherecb(T ) andcs(T ) are the concentration values at the binodal
and the spinodal, respectively (see figure 1). The supersaturation of the metastable state is
characterized by its reduced values, defined as

s = c − cb(T )
cs(T )− cb(T ) . (2)

For variation ofc between the binodal and the spinodal, thes-value varies between zero
and unity.

The prefactorJ0 in equation (1) is given by equation (I.57):

J0 =
(
β|γ0|
2π

)1/2

DaaNDR(u). (3)

Hereγ0 is the ‘critical’, negative eigenvalue in the expression (I.22) for the grand canonical
potential�{ci} (whereci is the mean occupation of the sitei by an A-species atom in the
non-uniform alloy state under consideration) near its saddle pointci = csi , which corresponds
to the critical embryo;Daa given by equation (I.55) is the generalized diffusivity in the
‘critical’ direction in the ci-space, which corresponds to the growth of the embryo;N
given by equation (I.43) is the normalizing constant in the embryo size distribution function
(I.42); andDR(u) is the Jacobian (I.24) of the concentrational variablesu1, u2, andu3 in
equation (I.20) (which describes the translations of the embryo) with respect to the Cartesian
coordinates of its centre,R1, R2, andR3.

The nucleation barrier1�c is the function1�{ci} given by equation (I.44) at the saddle
point valuesci = csi :

1�c = Fr{csi } − F(c)− µ(c)
∑
i

(csi − c). (4)

HereFr{ci} given by equation (I.45) is the ‘reduced’ free energy, which does not include
the contributions of the fluctuations of the sizea and the positionR of the embryo;F(c)
given by the general expression (I.9) with allci equal toc is the free energy of the initial
metastable state; andµ(c) is the chemical potential of this state, which is equal to the
derivativeN−1

s ∂F (c)/∂c whereNs is the total number of lattice sites.
To get an idea of the scale of the characteristics of the nucleation in alloys, we made

calculations based on equations (3) and (4) for several simple models of alloys. The
following models have been used.

(i) The nearest-neighbour interaction model for the FCC alloy, to be referred to as the
‘fcc-1’ model.

(ii) The same model for the BCC alloy, to be referred to as the ‘bcc-1’ model.
(iii) The FCC alloy model with interactions up to the third neighbour:v1 = −1,

v2 = −0.8, andv3 = −0.5, to be referred to as the ‘fcc-3’ model.

Comparison of the results for the first two models can be used to illustrate the effect of
the lattice structure on the nucleation, while a comparison for the fcc-1 and fcc-3 models
provides information about the interaction range effect: the mean squared interaction radius
r2
int =

∑
j vij r

2
ij /
∑
j vij for the model fcc-3 is twice the size of that for the model fcc-1.

3. The methods of calculation

For the free energyFr{ci} andF(c) in equation (4), we use four different approximations
discussed in section 2 of paper I: the ones based on the mean-field approximation (MFA),
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FMFA and FMFf, and the ones based on the pair-cluster approximation (PCA),FPCA and
FPCf. The chemical potentialµ(c) is determined by equation (I.7) atci = c using the
chosen approximation forF(c). Employing the MFA in our problem means omitting the
fluctuative termFf in equation (I.45) for bothFr{ci} and F(c). The mean-field-with-
fluctuations (MFf ) approximation forFfr corresponds to using the first-order perturbative
expression (I.11) for the fluctuative contribution when the integral overg in (I.36) is taken
analytically:

Ffr =
1

2

∑
k>4

ln
γk

γ 0
k

(5)

whereγk is the same as in equation (I.22), and theγ 0
k are the eigenvalues of the matrixẑ

used in equation (I.40) or (I.47). The MFf fluctuative contribution for the initial uniform
state,Ff (c) = F

f

MFA(c), is given by the expression (I.11) for such a case, as mentioned
in I. The PCA corresponds to approximating bothFr{ci} andF(c) in equation (4) by the
PCA expression (I.12) withci = csi andci = c, respectively. Finally, the pair-cluster-with-
fluctuations (PCf ) approximation corresponds to employing forFr{ci} in equation (4) the
full equation (I.45) withFij (g) = FPCA

ij (g) in equation (I.37) given by equation (I.13) at
vij (g) = gvij , and using forF(c) in equation (4) equations (I.16) and (I.13) atci = c, while
the integrations over charge in equations (I.36) and (I.16) are performed numerically.

With the chosen approximation for the free energyF {ci}, the calculation starts with
finding the structure of the critical embryo, i.e. the saddle point valuesci = csi for the
function1�{ci}, equation (I.44). The saddle point was found numerically using the standard
iterative algorithms with the appropriate choice of the initial distributionc0

i for iterations.
As it is convenient to use the cubic crystal symmetry Oh of the system (see below), we
considered the Oh-symmetric simulation region within a certain radiusRb, while the values
of ci = c(ri ) for ri > Rb were assumed to be equal to the initial valuec. TheRb-value was
taken such that the differencesci − c at ri = Rb do not exceed 10−3. This corresponds to
Rb-values that are 1.5–2 times the size of the critical embryo radiusRc, and it is sufficient
for the results to be virtually independent ofRb.

In calculations using the MFf and PCf approximations, we took into consideration the
fact that the fluctuative contributionFf is treated in these approximations as the first-order
perturbative correction [1]. Thus, for consistency of the calculations, the nucleation barrier
1�c in these approximations should be found only within the first order in the fluctuative
correction. As the critical embryo corresponds to the saddle point extremum of�{ci}, the
first-order correction to1�c = 1�{csi } corresponds to employing the zero-order values
csi0 for ci = csi in the rhs of equation (4), i.e. using the MFA values(csi )MFA in the MFf
approximation, and(csi )PCA in the PCf approximation: taking into account the saddle point
shift δcsi due to the fluctuative correction results only in a second-order correction in1�c.
The prefactorJ0 will be shown to be much less sensitive to the approximations used in the
calculations as compared to the exponent in equation (1); thus, in equation (3), the fluctuative
corrections were neglected. Therefore, the MFf approximation for1�c in equation (4)
differs from the MFA one only in the addition of the fluctuative termFfr = Ffr {(csi )MFA} to
Fr in equation (I.45), as well as in the addition of the similar fluctuative correctionsFf (c) to
F(c) andµf (c) to µ(c) in equation (4). The PCf approximation corresponds to employing
for Fr{ci} in equation (4) the expression (I.45) withci = (csi )PCA andFfr given by equations
(I.36) and (I.37) withFij (g) = F PCA

ij (g), using forF(c) equation (I.9) withci = c and
Kij = KPCA

ij determined by equation (I.13), whileµ(c) is found asN−1
s ∂F (c)/∂c.

To find the fluctuative termFfr , equation (I.36), in the MFf or PCf approximation, we
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Table 1. Characteristics of the nucleation for the fcc-1 alloy model atT ′ = 0.5. Here s
is the reduced supersaturation given by equation (2);c is the initial alloy concentration;Nc
andR2

c given by equation (10) are the total atom excess and the mean squared radius of the
critical embryo, respectively;rnn is the nearest-neighbour distance in the lattice;β = 1/T is
the reciprocal temperature;1�0 and1�1 are the values of the nucleation barrier (4) found in
zeroth and first order in the fluctuations, respectively, as explained in section 4, while1�c is
1�0+1�1; γ0 is the lowest, negative eigenvalue in the expansion (I.22) of the thermodynamic
potential�{ci} near its saddle pointci = csi ; Daa given by equation (I.55) is the generalized
diffusivity along the critical direction in theci -space corresponding to growth of the embryo;N
given by equation (I.43) is the normalizing constant in the embryo distribution function (I.42);
DR(u) given by equation (I.24) is the Jacobian of the ‘translational’ variablesu1, u2, u3 in
equation (I.22) over the embryo centre coordinatesR1, R2, R3; va is the average volume per
alloy atom; τe defined in the text after equation (9) is the characteristic time of the A↔ B
atomic exchange in the alloy; andJ0 is the total prefactor (3).

Method MFA or MFf PCA or PCf

s 0.10 0.20 0.30 0.45 0.60 0.10 0.20 0.30 0.45 0.60
c 0.034 0.046 0.059 0.078 0.096 0.025 0.035 0.045 0.060 0.076

Nc 212 56 29 19 16 238 64 36 25 22
Rc/rnn 2.7 1.9 1.8 1.8 2.1 2.9 2.1 1.9 2.1 2.4

β 1�0 38.3 12.3 6.2 2.8 1.3 43.8 14.5 7.4 3.3 1.4
β 1�1 5.1 3.5 3.4 3.6 3.8 −1.7 2.9 4.0 4.7 4.8
β 1�c 43.5 15.8 9.7 6.4 5.0 42.1 17.4 11.5 7.9 6.2

βγ0 −0.23 −0.47 −1.05 −1.60 −1.75 −0.22 −0.61 −1.11 −1.54 −1.58
τeDaa 0.40 0.38 0.41 0.37 0.40 0.29 0.29 0.28 0.27 0.25
N 0.74 0.75 0.65 0.66 0.70 0.81 0.77 0.73 0.74 0.88
vaDR(u) 41.4 7.7 2.3 0.7 0.2 49.7 9.0 3.1 0.9 0.3

τevaJ0 2.36 0.60 0.26 0.08 0.03 2.15 0.62 0.26 0.09 0.03

need the fluctuation spectrumγm. Therefore, we should diagonalize the matricesFij (g) in
(I.34) which are of a high rankr ∼ 104; see figure 5, later. To simplify the computations,
we used the cubic symmetry of the crystal lattices under consideration. First we note that
both the concentration distributionci = c(ri−R) and the thermodynamic characteristics of
the large critical embryo under consideration are virtually independent of the position of its
centreR. This is manifested, in particular, in the barrierless character of the translational
diffusion of the embryo mentioned in section 3 of I, and it was also seen in a number of our
calculations for various positionsR in the crystal cell. Thus, to simplify the calculations,
we tookR to be positioned at the centre of the cubic crystal cell, which for the FCC lattice
corresponds to an interstitial site, and for the BCC lattice corresponds to a lattice site. Then
for both the FCC and BCC lattices the concentration distributioncsi = cs(ri −R) in the
critical embryo has the full cubic symmetry. Therefore, the eigenvectors of the matrixFij (g)

at anyg form one of the irreducible representations of the cubic group Oh. Using tables
of these representations and their characters [6], we transform the matrixFij (g) into the
quasi-diagonal form corresponding to the irreducible representations. This reduces the rank
of the matrix by about two orders of magnitude, and makes the diagonalization problem
feasible.

For the cubically symmetric embryos under consideration, the JacobianDR(u), equation
(I.24), has the form

DR(u) = U3
11+ U3

12+ U3
13− 3U11U12U13 (6)
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Table 2. As table 1, but atT ′ = 0.7.

Method MFA or MFf PCA or PCf

s 0.10 0.15 0.20 0.30 0.45 0.10 0.15 0.20 0.30 0.45
c 0.100 0.107 0.114 0.128 0.149 0.083 0.090 0.096 0.109 0.129

Nc 1320 472 237 101 51 1531 560 289 128 69
Rc/rnn 5.2 3.8 3.2 2.7 2.5 5.4 4.0 3.4 2.9 2.8

β 1�0 54.5 25.9 15.3 7.1 3.0 66.6 32.0 19.0 9.0 3.8
β 1�1 99.2 32.8 16.5 8.2 5.8 7.4 3.4 3.6 4.4 5.1
β 1�c 153.7 58.7 31.8 15.3 8.8 73.9 35.4 22.6 13.4 8.9

βγ0 −0.05 −0.08 −0.14 −0.28 −0.54 −0.05 −0.09 −0.15 −0.29 −0.54
τeDaa 0.31 0.30 0.28 0.27 0.25 0.23 0.22 0.21 0.20 0.18
N 0.58 0.58 0.58 0.56 0.53 0.61 0.61 0.60 0.59 0.56
vaDR(u) 199.7 64.7 28.7 8.7 2.3 237.6 78.3 35.5 11.1 3.0

τevaJ0 3.03 1.29 0.70 0.28 0.09 2.80 1.29 0.71 0.28 0.09

Table 3. Characteristics of the nucleation for the bcc-1 alloy model atT ′ = 0.7.

Method MFA or MFf PCA or PCf

s 0.10 0.15 0.30 0.45 0.10 0.15 0.30 0.45
c 0.100 0.107 0.128 0.149 0.075 0.081 0.100 0.119

Nc 1211 430 92 46 1542 571 135 73
Rc/rnn 5.2 3.8 2.7 2.5 5.5 4.2 3.0 2.8

β 1�0 50.0 23.8 6.5 2.8 68.7 33.2 9.5 4.1
β 1�1 125.6 40.7 9.6 6.4 −7.4 −0.9 4.4 6.0
β 1�c 175.6 64.5 16.1 9.1 61.2 32.3 13.9 10.1

βγ0 −0.04 −0.09 −0.28 −0.54 −0.05 −0.09 −0.29 −0.52
τeDaa 0.20 0.20 0.18 0.17 0.12 0.11 0.10 0.10
N 0.59 0.58 0.56 0.53 0.63 0.63 0.60 0.57
vaDR(u) 230.7 74.2 10.4 2.8 289.4 96.8 14.4 4.0

τevaJ0 2.09 1.03 0.23 0.07 1.87 0.84 0.19 0.06

whereU11 = ∂u1/∂R1 = ∂u2/∂R2 = ∂u3/∂R3, U12 = ∂u1/∂R2 = ∂u2/∂R3 = ∂u3/∂R1,
andU13 = ∂u1/∂R3 = ∂u2/∂R1 = ∂u3/∂R2. The derivatives∂uα/∂Rβ were found by
numerical differentiation of the second of the equations (I.20) with the differentiation step
equal to the lattice constanta. For example, the derivativeU11 was found as

U11 = 1

a

∑
x1,x2,x3

A1(x1, x2, x3)[c(x1+ a, x2, x3)− c(x1, x2, x3)] (7)

whereA1(x1, x2, x3) is Ai1 = A1(ri −R) in equation (I.20) withk = 1, andx1, x2, and
x3 are the Cartesian components of the vectorri − R. Our checks (as well as figures 2
and 3) show that such numerical differentiation provides sufficient computation accuracy.
The results of these calculations are presented in tables 1–7 as the dimensionless quantities
vaDR(u) whereva is the average volume per atom—that is,a3/4 for the FCC lattice, and
a3/2 for the BCC lattice.

To find the mobilitiesMij that enter equation (I.55) for the diffusivityDaa, we use the
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Table 4. Characteristics of the nucleation for the fcc-3 alloy model atT ′ = 0.5.

Method MFA or MFf PCA or PCf

s 0.10 0.15 0.20 0.30 0.45 0.60 0.10 0.15 0.20 0.30 0.45 0.60
c 0.034 0.040 0.046 0.059 0.078 0.096 0.031 0.037 0.043 0.055 0.072 0.090

Nc 615 258 150 79 51 43 626 266 156 84 56 46
Rc/rnn 3.9 3.1 2.7 2.5 2.5 2.9 3.9 3.1 2.7 2.5 2.6 2.9

β 1�0 104.8 53.8 33.6 16.9 7.5 3.4 108.7 56.1 35.2 17.8 7.9 3.5
β 1�1 3.9 3.0 3.1 3.3 3.5 3.8 −3.0 0.7 2.1 3.2 3.8 4.2
β 1�c 108.7 56.8 36.7 20.2 11.1 7.2 105.7 56.8 37.3 21.0 11.8 7.8

βγ0 −0.19 −0.35 −0.54 −0.98 −1.56 −1.72 −0.19 −0.36 −0.56 −1.01 −1.56 −1.67
τeDaa 0.31 0.28 0.27 0.25 0.22 0.22 0.28 0.25 0.24 0.22 0.20 0.19
N 0.73 0.73 0.71 0.68 0.65 0.69 0.74 0.74 0.73 0.69 0.67 0.73
vaDR(u) 123.5 45.7 22.6 8.0 2.4 0.8 126.2 47.0 23.4 8.4 2.5 0.8

τevaJ0 4.87 2.20 1.28 0.53 0.17 0.06 4.58 2.10 1.23 0.50 0.16 0.06

Table 5. As table 4, but atT ′ = 0.6.

Method MFA or MFf PCA or PCf

s 0.10 0.20 0.30 0.45 0.10 0.20 0.30 0.45
c 0.060 0.074 0.088 0.108 0.056 0.069 0.083 0.102

Nc 1580 320 148 84 1622 334 158 91
Rc/rnn 5.4 3.5 3.0 3.0 5.4 3.5 3.1 3.1

β 1�0 134.8 39.7 19.1 8.3 141.0 41.9 20.2 8.8
β 1�1 24.1 6.1 4.6 4.2 −4.9 1.6 3.1 3.9
β 1�c 158.9 45.8 23.7 12.5 136.1 43.5 23.3 12.7

βγ0 −0.09 −0.27 −0.52 −0.94 −0.09 −0.28 −0.53 −0.94
τeDaa 0.25 0.23 0.20 0.18 0.22 0.20 0.18 0.16
N 0.66 0.64 0.62 0.58 0.67 0.65 0.63 0.60
vaDR(u) 267.6 42.7 14.1 4.0 275.0 44.4 14.8 4.2

τevaJ0 5.03 1.29 0.51 0.16 4.77 1.24 0.49 0.16

results of the kinetic MFA and PCA approaches described in references [8, 9]. The MFA
expression forMij has the form

MMFA
ij = γij

{
cic
′
icj c

′
j exp

[
β
∑
k

(uik + ujk)ck
]}1/2

. (8)

Hereγis is the configurationally independent factor in the probability of an atomic exchange
A↔B between the sitesi ands per unit time, and the ‘asymmetric potential’uij is expressed
via the inter-atomic interactionsV AA

ij andV BB
ij between A or B atoms asuij = V AA

ij −V BB
ij .

The PCA results for the mobility can be obtained from the general expression forMij

in the cluster-field approximation given in reference [9]. Neglecting for simplicity the
inter-cluster correlations (which leads to an error of about ten per cent for the models
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Table 6. As table 4, but atT ′ = 0.7.

Method MFA or MFf PCA or PCf

s 0.10 0.15 0.20 0.30 0.45 0.60 0.10 0.15 0.20 0.30 0.45 0.60
c 0.100 0.107 0.114 0.128 0.149 0.170 0.095 0.101 0.108 0.122 0.143 0.164

Nc 3676 1310 663 281 142 104 3833 1375 700 300 155 114
Rc/rnn 7.3 5.4 4.5 3.7 3.5 3.7 7.4 5.4 4.6 3.8 3.6 3.8

β 1�0 151.7 72.0 42.5 19.8 8.3 3.7 160.8 76.6 45.3 21.2 9.0 4.0
β 1�1 91.0 29.8 15.1 7.7 5.6 5.2 8.8 3.5 3.2 3.8 4.5 4.9
β 1�c 242.7 101.9 57.6 27.5 14.0 8.9 169.5 80.0 48.5 25.0 13.4 8.9

�1/�0 −0.030−0.033−0.036−0.043−0.056−0.072 −0.030−0.034−0.037−0.044−0.057−0.073

βγ0 −0.04 −0.09 −0.14 −0.28 −0.54 −0.72 −0.04 −0.09 −0.14 −0.28 −0.54 −0.71
τeDaa 0.18 0.18 0.17 0.16 0.14 0.14 0.16 0.16 0.15 0.14 0.12 0.13
N 0.58 0.58 0.57 0.56 0.53 0.52 0.59 0.59 0.58 0.57 0.54 0.53
vaDR(u) 438.5 143.2 64.6 20.4 5.5 1.7 457.8 150.2 68.1 21.6 5.9 1.8

τevaJ0 3.75 1.70 0.94 0.37 0.12 0.04 3.61 1.64 0.91 0.36 0.12 0.04

Table 7. As table 4, but atT ′ = 0.8.

Method MFA or MFf PCA or PCf

s 0.20 0.30 0.45 0.60 0.20 0.30 0.45 0.60
c 0.171 0.184 0.204 0.224 0.165 0.178 0.198 0.218

Nc 1433 568 269 187 1537 614 294 206
Rc/rnn 6.0 4.9 4.5 4.8 6.2 5.0 4.6 4.9

β 1�0 40.8 18.6 7.7 3.4 44.1 20.1 8.3 3.7
β 1�1 40.2 15.8 8.5 6.8 13.6 7.6 6.0 5.9
β 1�c 81.0 34.4 16.2 10.2 57.7 27.7 14.4 9.6

βγ0 −0.07 −0.14 −0.28 −0.41 −0.07 −0.14 −0.28 −0.40
τeDaa 0.11 0.10 0.09 0.09 0.10 0.10 0.08 0.09
N 0.51 0.50 0.49 0.48 0.52 0.51 0.49 0.48
vaDR(u) 79.0 24.1 6.4 1.9 84.8 26.1 6.9 2.1

τevaJ0 0.48 0.19 0.06 0.02 0.47 0.19 0.06 0.02

used), we obtain

MPCA
ij = γij c′ic′j exp

[
β

2

(
∂F

∂ci
+ ∂F
∂cj

)
+
∑
k 6=i,j

ln(1+ f ijk ck)
]

(9)

whereF = FPCA is given by equation (I.12), andf ijk is exp[β(uik− vik+ujk− vjk)/2]−1.
In the case of the applicability of the MFA,|βuij |, |βvij | � 1, equation (9) turns into (8).
The PCA expression for the mobility will be discussed in more detail elsewhere.

For numerical estimates, we use the nearest-neighbour exchange model, i.e. we set the
atomic jump probabilityγis in equations (8) and (9) to be 1/τe when the sitesi and s
are nearest neighbours, and zero otherwise; the quantityτe is evidently the characteristic
time for position exchange of neighbouring A and B atoms in an alloy. The asymmetric
potentialsuij in equations (8) and (9) are taken to be zero.
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Figure 2. Concentration profiles1c(r) = c(r)− c of the critical embryo for the model fcc-3 at
T ′ = 0.7 at various supersaturationss defined by equation (2). For clarity, the values of1c(r)

at neighbouring discrete pointsr = ri are connected with lines. Solid curves: the PCA; dashed
curves: the MFA.

Figure 3. As figure 2, found in the PCA at the supersaturations = 0.15 for the following
models and temperatures: curve 1: fcc-3 atT ′ = 0.7; curve 2: fcc-1 atT ′ = 0.7; curve 3:
bcc-1 atT ′ = 0.7; curve 4: fcc-3 atT ′ = 0.5.

4. Results of the calculations

The results of our calculations are presented in tables 1–7 and figures 1–6. The reduced
temperatureT ′ in the tables and figures is the ratioT/Tc, whereTc is the critical temperature
found for the model under consideration in the approximation used. The ‘Method’ row in
the tables indicates which of the above-discussed approximations forF {ci} (the MFA, MFf,
PCA or PCf) is employed in the calculation. The quantitys is the reduced supersaturation
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Figure 4. Profiles of the coefficientsAi0 = A0(ri ) andAi1 = A1(ri ) in equation (I.20) across
the diameter of the critical embryo,ri = (x, 0, 0), found in the PCA for the model fcc-3 at
T ′ = 0.7 ands = 0.15. Solid curve:A0(x); dashed curve:A1(x).

Figure 5. The density of statesN(βγ ) for the concentration fluctuation spectrum found as
described in the text for the fcc-1 model ats = 0.15 andT ′ = 0.7. Solid lines: the PCA;
dashed lines: the MFA. Curves 1 and 3 correspond to the state with the critical embryo; curves
2 and 4 correspond to the initial uniform metastable state.

(2) for the initial metastable state, whilec is the concentration that corresponds to thats.
Nc is the total excess of the A-species atoms in the critical embryo with respect to the initial
state, andR2

c is the mean squared radius of the embryo:

Nc =
∑
i

(ci − c) R2
c =

1

Nc

∑
i

r2
i (ci − c) (10)
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Figure 6. Values of the reduced nucleation barrierβ 1�c given by equation (4) versus the
reduced supersaturations found in the PCf approximation. Key to curves: dashed lines: fcc-1
model: (1)T ′ = 0.5, (2) T ′ = 0.7; long-dashed line: bcc-1 model: (3)T ′ = 0.7; solid lines:
fcc-3 model: (4)T ′ = 0.5, (5) T ′ = 0.7, (6) T ′ = 0.8.

while rnn is the nearest-neighbour distance, equal toa/
√

2 in the FCC lattice, and toa
√

3/2
in the BCC lattice. The valuesci = csi in equation (10) correspond to the critical embryo,
while ri is the distance from the sitei to the embryo centreR.

The quantities1�0 and1�1 in tables 1–7 are the terms in the sum1�c = 1�0+1�1

which are of zeroth and first order in the fluctuative contribution, respectively. For the MFA
and MFf approximations,1�0 is 1�MFA which corresponds to using the MFA expression
(I.46) for both Fr and F(c) in equation (4): Fr{ci} = FMFA{ci} with ci = (csi )MFA;
F(c) = FMFA{ci} with ci = c; andµ(c) = N−1

s ∂F (c)/∂c. Similarly, for the PCA and
PCf approximations,1�0 is 1�PCA, which corresponds to using the PCA expressions
(I.12) for bothFr{ci} andF(c) in equation (4), withci = (csi )PCA andci = c, respectively.
The quantity1�1 for both the MFf and PCf approximations can be written as

1�1 = Ffr {ci} − Ff (c)− µf (c)
∑
i

(ci − c). (11)

For the MFf approximation, the values ofci in equation (10) are(csi )MFA, Ffr {ci} is
F
f
r {ci} given by equation (I.36) or (5),Ff (c) = F

f

MFA(c) is given by the last term of
equation (I.9) atci = c andKij = KMFA

ij , while µf (c) is N−1
s ∂F f (c)/∂c. For the PCf

approximation, theci-values in equation (11) are(csi )PCA, while the fluctuative contribution
F
f
r {ci}, Ff (c) or µf (c) is defined as the difference between the PCf and PCA results for

each quantity. Therefore,Ffr {ci} is the differenceFPCf
r {ci} − FPCA{ci} whereFPCf

r {ci} is
given by equation (I.45) withFfr defined by equations (I.36) and (I.37) forFij (g) = FPCA

ij .
Similarly, Ff (c) is the differenceFPCf(c)− FPCA(c) with FPCf(c) given by equation (I.16)
with ci = c, while µf (c) is N−1

s ∂F f (c)/∂c. The quantity�1/�0 in table 6 is the ratio
�1(c)/�0(c) for the initial metastable state, where

�0(c) = F0(c)− µ0(c)N0 �1(c) = Ff (c)− µf (c)N0. (12)

HereN0 is Nsc whereNs is the total number of lattice sites,F0(c) andµ0(c) in the MFf
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approximation areFMFA(c) andµMFA(c), and in the PCA approximation they areFPCA(c)

andµPCA(c), while Ff (c) andµf (c) in equation (12) are the same as in equation (11).

5. Discussion of the results

Let us discuss the results of the calculations. First we note that they agree with the qualitative
conclusions of Cahn and Hilliard [3] concerning the variation of the parameters of the
critical embryo with increasing supersaturations: the nucleation barrier1�c lowers, the
interface with the exterior phase gets more diffuse, and the composition within the embryo
approaches that of the exterior phase. The calculated embryo radiusRc with increasings
at first decreases, but then begins to increase, which also agrees with the results of [3]; in
our calculations the minimum ofRc(s) is positioned ats & 0.45. However, as is discussed
below, at such highs the approach employed in this and previous work [2–4], which treats
an isolated embryo neglecting its interaction with other ones, loses its validity. Therefore,
the results of the calculations for such high values ofs may have no physical meaning.

At a given supersaturations, the values ofRc and Nc sharply rise with increasing
temperatureT . To qualitatively interpret this, one can employ the classical model in which
the embryo is treated as a homogeneous droplet with sharp boundaries [4]. The critical
radiusRc in this model is proportional to the ratio of the surface tension coefficientα

to the grand canonical potential per site differenceδω = [�(c, T ) − �(cb, T )]/Ns ; the
factorsα andδω determine the thermodynamic loss and thermodynamic gain, respectively,
in the formation of the embryo [4]. Thus the above-mentioned rise ofRc can imply that
with increasingT at fixed s the differenceδω(T ) decreases more rapidly than the surface
tensionα(T ). For actual embryos with diffuse boundaries, similar qualitative conclusions
may be applied to some averaged characteristics of the surface thermodynamic loss〈α〉 and
the volume thermodynamic gain〈δω〉.

Comparisons of theRc-values for the fcc-1 and fcc-3 models given in tables 1 and
5, 3 and 6, and in figure 3 illustrate a notable dependence of the embryo sizeRc on the
interaction radiusrint ; in our results,Rc is approximately proportional torint . This can
imply a similar dependence onrint of the above-mentioned ‘effective surface tension’〈α〉,
which correlates with the linear dependence onrint of the usual inter-phase surface tension
in the Ginzburg–Landau theory [7].

The values ofNc in tables 1–7 show that the critical embryo includes a great number
of atoms for all of the alloy systems considered. Therefore, the number of sitesNe within
the embryo is always large:Ne > Nc � 1, which was repeatedly mentioned and made use
of in I.

Figures 2 and 3 show the concentration profile of the critical embryo,1c(r) = c(r)−c.
When at a givenr = |ri | there are several non-equivalent vectorsr = ri , such as the
vectors(3, 3, 3)a/2 and(5, 1, 1)a/2 in the BCC lattice, then several values1c(ri ) for that
|ri | = r are presented in the figures; this causes vertical peaks in the curves1c(r). The
profiles show that the concentration distribution in the embryo is approximately spherical,
particularly when the configurational interaction spreads beyond the nearest neighbour,
which is the case for the fcc-3 model. However, for the nearest-neighbour interaction
models, particularly for the bcc-1 model, irregularities in1c(r) reflecting a non-sphericity
in the concentration distribution are distinctly seen in figure 3. The difference in1c(r)

between the fcc-1 and bcc-1 models in figure 3 is small; thus the lattice structure has little
effect on the concentration profile.

Figure 4 illustrates the physical meaning of the concentrational modesu0 and u1

in equations (I.20)–(I.22). According to the second of equations (I.20), the quantity
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Ai0 = A0(ri ) or Ai1 = A1(ri ) determines the change of the concentration distribution
ci = c(ri ) under the variation of the variableu0 or u1. Comparison of figures 4 and 3
shows that the variationδu0 corresponds to the variation of the size of the embryo, i.e. the
shifting of its boundary outwards atδu0 > 0 or inwards atδu0 < 0, while δu1 corresponds
to the shift of the embryo as a whole along thex-axis.

The reduced eigenvalueβγ0 in tables 1–7 characterizes the negative curvature of the
thermodynamic barrier1�{ci} (I.19) at its saddle point. The value|βγ0| decreases with
increasing temperature and increases with increasing supersaturation, being zero at the
binodal whens = 0 and becoming of the order of unity ats & 0.6. With further increasing
s, the value of|βγ0| begins to decrease, and it vanishes again at the spinodal whens = 1,
but, as mentioned above, calculations for such high values ofs may have little physical
meaning. The geometric factorDR(u) in tables 1–7 varies withs andT similarly to the
total volume or the total atom excessNc in the embryo, sharply increasing with decreasing
s or increasingT . Unlike βγ0 andDR(u), the diffusivityDaa and the normalizing factor
N in tables 1–7 both exhibit a weak dependence ons and T . Therefore, thes- and T -
dependence of the prefactorJ0 in equations (1) and (3) is mainly determined by that of the
factorDR(u); in particular,J0 notably decreases with increasing supersaturations.

Let us now discuss the results for the nucleation barrier1�c. First we discuss the
importance of the fluctuative effects for this quantity. The zero-order values1�0 in tables
1–7 correspond to the MFA or PCA results for1�c. As discussed in I, in the MFA the
fluctuative effects are neglected, while the PCA takes into account only the pair correlations
of fluctuations and neglects the many-site ones. Comparing the values of1�0 in tables
1–7, we see that for the nearest-neighbour interaction models the values of1�PCA notably
exceed those of1�MFA, by 20–30% for the fcc-1 model, and by 40–50% for the bcc-1
model. Therefore, the errors in the simple MFA approach in evaluations of the nucleation
barrier for systems with short-range interactions can be significant. For the fcc-3 model the
values of1�MFA and1�PCA are close to each other, in accordance with the well-known
decreasing of fluctuative effects with increasing interaction range [10].

The MFf approximation treats the fluctuative contribution as a first-order perturbative
correction to the zero-order MFA result, which is appropriate only when the correction
is not large. In our problem, this means that the ratiorMF = 1�MFf

1 /1�MFA should
be small. Similarly, the PCf approximation corresponds to the perturbative treatment of
the non-pair correlations disregarded in the PCA [1], and thus it is applicable when the
ratio rPC = 1�PCf

1 /1�PCA is small. It is also known that for uniform systems the MFf
approximation usually overestimates the fluctuative contributions, particularly in the phase
transition region [10].

The results for1�1 and1�0 given in tables 1–7 show that the relative importance of
the fluctuative effects, as characterized by the value ofrMF or rPC, sharply rises with bothT
and s. The rise with temperature is natural, by general considerations, while the rise with
supersaturation seems to be mainly related to the increase of the embryo boundary smearing
illustrated in figure 2. The structure of the atomic distribution near the boundary appears
to be much more soft and flexible than that in the homogeneous system. This results in an
enhancement of the concentration fluctuations in this region, and thus their thermodynamic
contribution rises.

This softening of the fluctuation spectrum is illustrated in figure 5, which presents the
density of statesN(βγ ) for the quantitiesβγ = βγk whereγk entering equation (I.22) is the
eigenvalue of the matrixFij = ∂2F/∂ci ∂cj . The values ofN(βγ ) in figure 5 were found
by sampling of theβγk-values over the intervals1(βγk) = 0.5, while the total number
of γk used in this calculation (equal to the number of sites in the simulation region) was
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7136. According to equations (I.8) and (I.22), the quantity 1/βγk is the mean squared
fluctuation amplitude for the fluctuative eigenmodeuk; thus the fluctuative thermodynamic
contribution increases with decreasingβγk. In particular, in the MFf approximation the
increase is described by equation (5). Figure 5 shows that the softening of the fluctuation
spectrum is very pronounced, and in the PCf approximation it is still stronger than in
the less accurate MFf one. The ‘soft’ fluctuations correspond mainly to surface modes—in
particular, to variations of the shape of the embryo. Figure 5 also shows the presence of some
‘stiff’ concentrational modes with large values ofβγk that correspond to the fluctuations
localized well within the embryo. However, the total number of such stiff modes and their
thermodynamic contribution are small.

Let us now discuss the values of the above-mentioned ratiorMF or rPC that characterize
the applicability of the MFf or PCf approximation. Finding these ratios with the use of
tables 1–7, we see that for the MFf approximation the applicability region is rather narrow.
For the nearest-neighbour interaction systems considered, therMF-value is small only for
the fcc-1 model at the lowestT ′ = 0.5 ands = 0.1. Even for the fcc-3 model (for which
the interaction range is large and the fluctuative effects are suppressed [10]), the ratiorMF

is small only at lowT ′ = 0.5–0.6 and lows . 0.3. At the same time, the analogous
parameterrPC for the PCf approximation remains small over broad intervals ofT ′ and s
even for the nearest-neighbour interaction models. However, with increasing supersaturation
s the rPC-value becomes no longer small, too; for the nearest-neighbour interaction models,
this happens ats & 0.3, and for the fcc-3 model, ats & 0.45.

The increase of the fluctuative effects is entirely due to the above-mentioned softening
of the fluctuation spectrum in such non-uniform systems as embryos. This is illustrated
by the values ofr(c) = �1/�0 in table 6 which are analogues ofrMF or rPC but for the
uniform metastable state. We see that the values ofr(c) remain small at all supersaturations
s for both the MFf and the PCf approximation.

Therefore, for the non-uniform systems under consideration, the MFf approximation
appears to overestimate the fluctuative effects even more strongly than it does in the
homogeneous case. At the same time, the PCf approach in our problem seems to have
a sufficiently wide applicability region, and at moderates . 0.3–0.45 this approach seems
to be the most accurate of the ones used in this work. Therefore, the final estimates of
the nucleation barrier1�c presented in figure 6 employ the PCf approximation. However,
with further increasing supersaturation the fluctuative effects become really large, and all
of the calculations of this work become unreliable.

Let us now discuss the limitations of the theory related to its main physical assumptions
rather than to methodological difficulties. The approach employed [1–4] considers the
isolated embryo within an otherwise unperturbed metastable state, and neglects interactions
of different embryos. This assumes a negligible probability of finding another embryo
within the characteristic volumevc ∼ l3c during the time intervaltc which is important for
the process. Therefore, the nucleation rateJ in equation (1) should obey the inequality

J tcl
3
c � 1. (13)

The lower limit for the timetc = tc(lc) can be estimated from the condition that it should be
sufficient for the processes of the approximate equilibration of the concentration distribution
around the critical embryo to take place. Therefore,tc should exceed the characteristic time
needed for diffusion over the distancelc: tc > l2c /D whereD ' r2

nn/τe is the atomic
diffusivity. On the other hand, in order for the different embryos not to affect each other,
the characteristic sizelc should significantly exceed the embryo diameter 2Rc. If we take
for lc, say, lc ∼ 4Rc, and take the estimater3

nn ∼ va, whereva is the average volume per
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atom, inequality (13) takes the form

103(τevaJ0) exp(−β 1�c)(Rc/rnn)5� 1. (14)

The numerical factor in the lhs of this inequality is most probably underestimated. For
example, we did not take into account the restrictions on the timetc related to the
conservation of the total number of atoms, which would result in(1/c)-type factors in
the lhs of equation (14). However, such refinements would hardly significantly affect the
numerical estimates given below.

Using for the parametersJ0, 1�c, andRc in inequality (14) their values given in tables
1–7 for the PCf approximation, we find that for the nearest-neighbour interaction models the
inequality corresponds tos . 0.3–0.35, and for the fcc-3 model it corresponds tos . 0.45,
while the temperature dependence of the lhs of equation (14) is relatively weak. Therefore,
the reduced supersaturations appears to be the main factor determining the nucleation rate,
for the models considered anyway. Let us also note that these limiting values ofs are
numerically close to those determined from the above-discussed condition of the relative
insignificance of fluctuative effects in the thermodynamics of nucleation.

Even when inequality (14) is obeyed, the approach used [1–4] requires the total time
t of the process to be not too long in order for the total amount of the new phase to be
relatively small. The relevant restrictions ont can be found from atom-number-conservation
considerations.

6. Conclusions

Let us summarize the main results of this work. To get an idea of the characteristics
of homogeneous nucleation in alloys, we used the microscopical theory developed in the
preceding paper [1] to calculate the nucleation rate and the parameters of the critical embryo
for several alloy models. The nearest-neighbour interaction models for the FCC and BCC
lattices (the fcc-1 and bcc-1 models) and the third-neighbour interaction model for the FCC
lattice (the fcc-3 model) have been considered. The results of the calculations show that the
nucleation rate is mainly determined by three ruling parameters: the reduced supersaturation
s defined by equation (2), the reduced temperatureT ′ = T/Tc where Tc is the critical
temperature, and the ratio of the interaction radiusrint defined in section 2 to the nearest-
neighbour distancernn. These parameters can also be useful for analysing the nucleation in
other systems, such as vapours or liquids. With increasing supersaturations, the nucleation
barrier1�c lowers, the interface of the critical embryo with the exterior phase gets more
diffuse, and the composition within the embryo approaches that of the exterior phase, in
qualitative agreement with the conclusions of Cahn and Hilliard [3] reached with the use of
a simplified treatment. At all of the values ofs, T considered, the critical embryo is large,
i.e. includes a great number of sites. The excess of atoms,Nc, and the radiusRc of the critical
embryo increase sharply with decreasing supersaturations and increasing temperatureT .
With increasing interaction radiusrint , the embryo radiusRc rises approximately linearly;
this can be understood in terms of the classical sharp-boundary model of the critical embryo
[4] if one accepts the Ginzburg–Landau approach result [7], namely that the dependence
of the inter-phase surface tension onrint is linear. The concentration distributionc(r) of
the critical embryo is approximately spherical, but a slight non-sphericity ofc(r) is clearly
seen in the nearest-neighbour interaction systems, particularly for the bcc-1 model.

The prefactorJ0 in the Zeldovich–Volmer relation (1) notably decreases with increasing
supersaturation, typically by two orders of magnitude betweens = 0.1 and s = 0.6,
while its temperature dependence at fixeds is relatively weak. The calculations of the
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nucleation barrier1�c carried out using various approximations for the free energy of a
non-uniform alloy,F {ci}, show that the use of the mean-field approximation (MFA) for
the nearest-neighbour interaction models can lead to significant underestimation of1�c
with respect to the more accurate pair-cluster approximation (PCA): by 20–30% for the
fcc-1 model, and by 40–50% for the bcc-1 model. For the fcc-3 model where the
interaction range is larger, the MFA and PCA results for1�c are close to each other.
The thermodynamic contribution of the composition fluctuations to1�c sharply rises with
increasing supersaturation. This reflects a considerable softening of the fluctuation spectrum
for highly inhomogeneous systems, and an increase of the fluctuation amplitudes in the
region of the diffuse surface of the embryo which is related to the diffuse character of its
boundary. However, employing the ‘pair-cluster-with-fluctuations’ approximationFPCf{ci}
suggested in [1] enables one to quantitatively describe the fluctuative contributions over
broad intervals of supersaturation, fors . 0.3 for the nearest-neighbour interaction models,
and fors . 0.45 for the fcc-3 model. At highers the fluctuative effects become large, and
the calculation methods used in this work become unreliable.

The more important restriction on the applicability of the theoretical approach used
[1–4] is related to the neglect of the interactions of different embryos. The estimates
(13), (14) made with the use of our numerical results show that such effects limit the
applicability region to supersaturation values that are not too high, namelys . 0.3–0.35 for
the nearest-neighbour interaction models, ands . 0.45 for the fcc-3 model. These limits
are numerically close to the above-mentioned conditions for the relative insignificance of
fluctuative effects in the thermodynamics of nucleation. However, within these limits, the
microscopical approach developed in this work seems to provide a way of treating the
homogeneous nucleation in alloys consistently.
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